Blog

-ITY noun suffix

1 CITY (NN1) 5335196 2 COMMUNITY (NN1) 4229747 3 UNIVERSITY (NN1) 4091376 4 QUALITY (NN1) 3993481 5 SECURITY (NN1) 2729698 6 ABILITY (NN1) 2326706 7 OPPORTUNITY (NN1) 2196068 8 ACTIVITY (NN1) 1554193 9 REALITY (NN1) 1012545 10 MAJORITY (NN1) 980325 11 CAPACITY (NN1) 909816 12 AUTHORITY (NN1) 881294 13 RESPONSIBILITY (NN1) 861785 14 FACILITY (NN1) […]

Read more

‘most’ + NOUN

1 MOST (DAT) PEOPLE (NN) 528006 2 MOST (DAT) CASES (NN2) 174149 3 MOST (DAT) THINGS (NN2) 27916 4 MOST (DAT) WOMEN (NN2) 25879 5 MOST (DAT) COMPANIES (NN2) 25464 6 MOST (DAT) STATES (NN2) 23512 7 MOST (DAT) DAYS (NNT2) 23351 8 MOST (DAT) AMERICANS (NN2) 21777 9 MOST (DAT) STUDENTS (NN2) 21195 10 […]

Read more

BASE VERB + BASE VERB

Many of the second base verbs are more like nouns.  For example, “Press the ENTER button.” 1 PRESS (VV0_NN1) ENTER (VV0) 16128 2 CLICK (VV0_NN1) ADD (VV0) 15009 3 GO (VV0) GET (VV0) 14910 4 CLICK (VV0_NN1) SAVE (VV0) 12303 5 COME (VV0) JOIN (VV0) 11010 6 COME (VV0) SEE (VV0) 10450 7 GO (VV0) […]

Read more

VERB + NOUN + VERB

It seems impossible to find a lexical base verb after lexical verb + noun. 1 GET (VVI) THINGS (NN2) DONE (VDN) 15273 2 MAKE (VVI) ENDS (NN2) MEET (VVI) 12084 3 GETTING (VVG) THINGS (NN2) DONE (VDN) 7515 4 LET (VVI) PEOPLE (NN) KNOW (VVI) 6309 5 HAVING (VHG) TROUBLE (NN1) GETTING (VVG) 6301 6 […]

Read more

Legal Notice: Copyright 2019. The online software, text report and research at EnglishGrammar.Pro has made use of the English Grammar Profile. This resource is based on extensive research using the Cambridge Learner Corpus and is part of the English Profile programme, which aims to provide evidence about language use that helps to produce better language teaching materials.